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Short planar glow discharges coupled to a resistive layer exhibit a wealth of spontaneous spatiotemporal
patterns. Due to similarities with other pattern forming systems that are described by reaction-diffusion models,
several authors have tried to derive such models from discharge physics. We investigate the temporal oscilla-
tions of the discharge system and find a cascade of period doubling events. This shows that the inner structure
of the discharge is more complex than can be described by a two-component reaction-diffusion-model with
negative differential conductivity. We also derive an alternative reduced model.
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I. PATTERN FORMATION IN SHORT “BARRIER”
DISCHARGES

Glow discharges are part of our daily environment in con-
ventional and energy saving lamps, beamers, flat TV screens,
car and street lamps, as well as in various industrial applica-
tions. While applications typically try to avoid any instabili-
ties, experiments actually exhibit a realm of spontaneous pat-
tern formation, see, e.g., Ref.[1].

While composite gases or complex external electric cir-
cuits with ac drive can create many additional structures,
even a simple planar discharge gap filled with pure nitrogen
and subject to dc drive already can form rich spatiotemporal
structures. An interesting series of experiments has been per-
formed on such glow discharges with wide lateral extension
[2–13] where the formed patterns were explored very sys-
tematically. The observed structures(stripes, hexagons, spi-
rals, spots, homogeneous oscillations, etc.) resemble those
observed in Rayleigh-Benard convection in flat cells, in elec-
troconvection in nematic liquid crystals, or in various chemi-
cal or biological pattern forming systems. In comparison to
the other systems, the glow discharge system has the advan-
tage of particular convenient experimental handling and time
scales[14]. In addition to structures familiar from other
physical systems, glow discharges continue to exhibit new
structures that might be specific for this system[2–13]. We
will focus on the experiment in Ref.[9], where a complete
phase diagram of different patterns was identified: homoge-
neous stationary and homogeneous oscillating modes, pat-
terns with spatial and spatiotemporal structures, etc.

As said above, the gas discharge patterns show many
similarities with patterns formed in other physical, chemical
or biological systems that can be described by reaction-
diffusion models. This observation suggests that also to these
gas discharges, effective reaction-diffusion models could be
applicable. They would describe the phenomena in the two
transversal directions of the layered structure. Negative dif-
ferential conductivity of the glow discharge should then be
the driving force of pattern formation. A number of authors
[4,15–22] actually have aimed at deriving such models from
gas discharge physics, but not in a systematic manner.

II. SUMMARY OF OUR RESULTS

In the present paper, we first examine the concepts of
two-component reaction-diffusion models with negative dif-
ferential conductivity. We then solve a simple explicit model
for the gas discharge layer and confront the results with those
of reaction-diffusion models. The analysis is performed in a
parameter range where the discharge exhibits spontaneous
temporal oscillations but no spatial structures transverse to
the current[9]. This means that the diffusion part of the
model is not relevant, but, of course, our findings generalize
to cases with spatial structure.

In short, we find the following.
(i) A discharge on the transition from Townsend to glow

discharge can combine a positive local differential conduc-
tivity with a negative global differential conductivity.

(ii ) A glow discharge in a simple electric circuit shows
more complex behavior than can be expected from the pro-
posed reaction-diffusion models[4,15–22] for voltageU and
current J with (global) negative differential conductivity
dU/dJ,0.

(iii ) In particular, the system can show a cascade of pe-
riod doubling bifurcations. Period doubling actually has been
observed experimentally in glow discharges, but in more
complex geometries and in longer systems[23,24].

(iv) Finally, we derive an effective dynamical model in
terms of a parameter and a function by adiabatic elimination
of the electrons. There is no systematic way to reduce this
model to a simpler one[4,15–22] with two scalar parameters
such as voltageU and currentJ. We draw this conclusion
both from direct analysis and from the occurence of period
doubling in the numerical solutions.

III. PREVIOUSLY SUGGESTED REDUCTIONS TO
REACTION-DIFFUSION MODELS

To be precise, in the experiments of Refs.[2–13], a planar
glow discharge layer with short length in the forward direc-
tion and wide lateral dimensions is coupled to a semiconduc-
tor layer with low conductivity. The whole structure is sand-
wiched between two planar electrodes to which a dc voltage
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Ut is applied. Theoretical predictions on how the different
spatiotemporal patterns depend on the parameters of the gas
discharge hardly exist. In Refs.[4,16–18], an effective
reaction-diffusion model in the two dimensions transversal to
the current is proposed. Roughly, it consists of two nonlinear
partial differential equations for the currentJ and the voltage
U of the form

]tUsx,y,td = FsU,Jd, ]tJsx,y,td = GsU,Jd s1d

where the nonlinear operatorsF andG contain spatial deriva-
tives]x,]y and possibly also integral kernels. The model is of
reactor-inhibitor form as studied extensively in the context of
chemical and biological systems in the past decades. If ap-
plicable to gas discharges, this identification lays a connec-
tion to a realm of analytical and numerical results on
reaction-diffusion systems.

To test whether a model such as Eq.(1) is applicable to
the gas discharge system, we will focus on its temporal os-
cillations that can occur in a spatially completely homoge-
neous mode[9]; hence a one-dimensional approximation is
appropriate. Similar oscillations have been observed in Refs.
[19,20,25,26], and similar effective models for currentJ and
voltage U of the general form(1) have been proposed in
Refs.[15,19–22].

Why have different authors come up with the same type
of model? The equation forU directly results from the sim-
plest form of an external electric circuit: a semiconductor
layer of thicknessds, linear conductivityss, and dielectricity
constantes will evolve as

]tU =
Ut − U − RsJ

Ts
, s2d

where Ut is the voltage on the total system,J is the total
current, andU=e0

dgE dz is the voltage over the gas discharge
which is the electric fieldE integrated in thez direction over
the heightdg of the discharge. For the experiments in Ref.
[9], Rs=ds/ss is the resistance of the whole semiconductor
layer, whenss is its conductivity, andTs=ese0/ss=CsRs is
the Maxwell relaxation time of the semiconductor with di-
electricity constantes. In other experimental systems, the
quantitiesRs and Ts can have different realizations. Hence
the form of the equation forU in a reaction-diffusion model
(1) is clear.

However, the equation forJ in a reaction-diffusion model
such as Eq.(1) is based on the plausibility of such a model
due to analogies with other pattern forming systems and on
various attempts to derive such a form with ad hoc assump-
tions from gas discharge physics. Different choices have
been suggested by different authors, but one feature is ge-
neric: to be physically meaningful, the current-voltage char-
acteristics of the glow discharge has to be a stationary solu-
tion, soGsU ,Jd=0 on the characteristics. Beyond that, there
are different suggestions for the functional form ofG and the
intrinsic time scale.

If a model such as Eq.(1) is applicable to oscillations in
glow discharge systems, then the following predictions
apply.

(1) An oscillation can only occur in a region of negative
differential conductivitydU/dJ,0 of the glow discharge
characteristics.

(2) Only a single period can be formed, period doubling
is not possible, since this would require at least three inde-
pendent parameters.

(3) In a phase space plot inU andJ, the trajectory of an
oscillation can intersect the load lineU=Ut−RsJ only paral-
lel to theJ axis (since]tU=0 and]tJÞ0), and it can inter-
sect the characteristics of the glow dischargeU=UsJd only
parallel to theU axis (since]tUÞ0 and]tJ=0).

IV. THE FULL DISCHARGE MODEL

We now introduce the simplest classical model for a glow
discharge[27–29], solve it numerically, and confront its re-
sults with the predictions above. A discharge between
Townsend and glow regime consists of a gas with Ohmic
conductivity for the rare charged particles, electrostatic space
charge effects and two ionization mechanisms, namely, im-
pact ionization by accelerated electrons in the bulk of the
discharge(the so-calleda process) and secondary emission
from the cathode(the g process). In its simplest form, it can
be modeled by continuity equations for electron particle den-
sity ne and ion particle densityn+

]tne + = ·Je = S, ]tn+ + = ·J+ = S, s3d

and the Poisson equation for the electric fieldE in electro-
static approximation

= ·E =
e

«0
sn+ − ned, E = − = F. s4d

The particle currents are approximated as purely Ohmic:

Je = − me ne E, J+ = m+ n+ E. s5d

The source of particles in the continuity equation(3) is writ-
ten as a sum of generation by impact ionization in Townsend
approximation and recombination

S= unemeEu a0e
−E0/uEu − bnen+. s6d

Finally, the secondary emission from the cathode enters as a
boundary condition at the positiondg of the cathode

menesdg,td = gm+n+sdg,td. s7d

This is the classical glow discharge model[27–29].
We reduce the problem to one spatial dimensionz trans-

verse to the layers which is an excellent approximation for
the experimentally observed homogeneous oscillations[9].
Furthermore, we introduce dimensionless quantities as in
[29] by rescaling all parameters and fields asz=rz/X0, t
= t / t0, L=dg/X0, ssz,td=nesrz,td /n0, r=n+/n0, E=Ez/E0

with the scalesX0=a0
−1, t0=sa0meE0d−1, andn0=e0a0E0/e. A

key role is played by the small parameterm=m+/me, which
is the mobility ratio of ions and electrons.

The gas discharge layer is now modeled by

]ts = ]zsEsd + sEasEd, asEd = e−1/uEu, s8d

]tr = − m]zsErd + sEasEd, s9d
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rs0,td = 0, s10d

ssL,td = gmrsL,td, s11d

r − s = ]zE, s12d

where recombination was neglected[b=0 in Eq. (6), a dis-
cussion of this approximation follows below], while the ex-
ternal circuit is described by

]tU =
Ut − U − Rsj

ts
, Ustd =E

0

L

Esz,tddz s13d

with the dimensionless voltageU=U / sE0X0d, time scalets

=Ts/ t0, and resistanceRs=Rs/R0, R0=X0/ semen0d and with a
spatially conserved total current

jstd = ]tE + mrE + sE, ]zjstd = 0, s14d

where]z j =0 follows from Eqs.(8), (9), and(12) as usual.
As a result, the gas discharge is parametrized by the three

dimensionless parameters of system length over ionization
lengthL, secondary emission coefficientg, and mobility ra-
tio m (as discussed in[29,30]), and the external circuit is
parametrized by relative resistanceRs, ratio of time scales
ts, and dimensionless applied voltageUt. For calculational
purposes, the ion densityr can be completely eliminated
from the one-dimensional gas discharge equations(8), (9),
(11), and(12) with the help of the Poisson equation(12) and
the total currentj , see Ref.[29]. The result are two equations
of motion for]ts and]tE. In our numerical calculations, the
system was implemented in this form. Our choice of param-
eters was guided by the experiments in Ref.[9]: we chose the
secondary emission coefficientg=0.08, the mobility ratio
m=0.0035 for nitrogen, and the dimensionless system size
L=50 which amounts to 1.4 mm at a pressure of 40 mbar.
The external circuit hasRs=30597,ts=7435, and a dimen-
sionless total voltageUt in the range between 18 and 20. This
corresponds to a GaAs layer withes=13.1, conductivityss
=s2.63105 V cmd−1 and thicknessds=1.5 mm, and a volt-
age range between 513 and 570 V.

V. SOLUTIONS OF THE DISCHARGE MODEL: A PERIOD
DOUBLING CASCADE

Figure 1 shows electric currentj and voltage on the gas
dischargeU as a function of time for a total stationary volt-
ageUt=19 applied to the complete system of gas discharge
and semiconductor layer. The system exhibits spontaneous
oscillations with sharp current peaks: when the voltageU on
the gas layer becomes high enough, the discharge ignites.
The conductivity of the gas increases rapidly and produces a
current pulse that deposits a surface charge on the gas-
semiconductor interface. Therefore the voltageU over the
gas layer breaks down. Due to the low conductivity of the
semiconductor, the voltageU recovers only slowly. Eventu-
ally the gas discharge ignites again, and the cycle is repeated.

Note that the oscillations in Fig. 1 are not quite periodic.
This is not due to initial transients since the system is ob-
served after the long relaxation timet=4.7453106. The na-

ture of this temporal structure becomes clear when the tra-
jectory is plotted in the plane spanned by currentj and
voltageU in Fig. 2(c). The figure contains the data of the
time span fromt=33106 to 63106 which amounts to ap-
proximately 90 current pulses. The phase space plot shows
that the system is actually periodic, with a period of eight
current pulses. Fig. 1 shows precisely one period.

This discovery raises the question whether our system ac-
tually follows the well-known scenario of period doubling.
Indeed, it does. Figure 2(a) for Ut=18 shows an oscillation
where one current pulse is repeated periodically as observed
experimentally in Ref.[9]. For Ut=18.5, a period consists of
two current pulses as can be seen in Fig. 2(b). ForUt=19, the
period is 8 pulses as in Fig. 1 and 2(c). For Ut=20, the
system seems to have reached the chaotic state as can be
seen in Fig. 2(d).

A detailed comparison of the experiments in[9] with
simple oscillations as in Fig. 2(a) will be given elsewhere
[31], and we only state here that there is semiquantitative
agreement of several features. Here we emphasize that pe-
riod doubling events in glow discharges have been observed
experimentally in other systems[23,24]. However, this was
always in systems with more complicated geometries such as
long narrow tubes, and the authors allude to general knowl-
edge on nonlinear dynamics rather than to solutions of ex-
plicit models. We state that period doubling can be a generic
feature of a simple, strictly one-dimensional glow discharge
when coupled to the simple circuit(2). We propose to search
experimentally for a period doubling route to chaos in such
simple systems which would then allow quantitative com-
parison with theory.

VI. COMPARISON WITH PREDICTIONS OF REACTION
DIFFUSION MODELS

Let us return to the initial question: is a two-component
reaction diffusion model such as Eq.(1) with negative dif-
ferential conductivity appropriate for the present system? At
the end of Sec. III, we gave a list of three predictions for the
reaction diffusion model(1) to be applicable. Prediction 2 is
falsified by the observation of period doubling. Prediction 3

FIG. 1. Spontaneous oscillations of currentj and voltageU as a
function of time t for g=0.08, m=0.0035,L=50, Rs=30597,ts

=7435, and applied total voltageUt=19.
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is also falsified by a simple check of either of the three fig-
ures in Fig. 2: in the upper part of the figures that represent
the rapid current pulses, the trajectories definitely do not in-
tersect with the characteristics with the angle prescribed by
Eq. (1).

There rests prediction 1: is negative differential conduc-
tivity required for the oscillations to occur? We have not
found a numerical counter example where oscillations would
occur while the current voltage characteristics of the gas dis-
charge shows a positive differential conductivity, but we
have found no reason to exclude its existence. Furthermore
we note that the characteristics are a global property of the
whole discharge layer with its boundary conditions[29]
while the local differential conductivity in our model is al-
ways positive: the field dependent stationary ionization is
n+= umeEua0e

−E0/uEu /b according to Eq.(6); hence the local
conductivity increases monotonically with the applied field
uEu. The global negative differential conductivity is due to
electrode effects being much stronger than bulk recombina-
tion b. In the meantime, we have found a counter example

where a state with positive differential conductivity is un-
stable and develops into a limit cycle. Details will be given
elsewhere.

VII. AN ALTERNATIVE SYSTEMATIC
MODEL REDUCTION

Finally, we have derived an analytical approximation of
the model(8)–(14) that can be confronted with the suggested
reaction-diffusion form(1). The reduction is based on an
adiabatic elimination of the electrons.

Basically, close to the stationary state, the electric particle
current is conserved. Close to the anodez=0, this current is
mainly carried by the electronssE and close to the cathode
z→L, it is mainly carried by the ionsmrE. The electric field
stays of order unity throughout the system. Thereforemr
should scale similar tos: Osmrd=Ossd. Now the fieldE and
the system sizeL are of order unity, and therefore also]zE
=r−s. The conclusion is thatr=Os1d, and hences=Osmd.
Therefore we substitutes=s /m where s is now of order

FIG. 2. Phase space plots of the trajectories of the oscillations in the plane of currentj and voltageU. The time range is 33106øt
ø63106 in all figures. Shown are the orbits, the straight load lineU=Ut−Rsj and the curved current voltage characteristicsU=Us jd of the
gas discharge[29]. The intersection of load line and characteristics marks the stationary solution of the system.(c) The data of Fig. 1 with
total voltageUt=19, (a) is for Ut=18, (b) for Ut=18.5, and(d) for Ut=20.
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unity. This expresses more clearly that the electrons contrib-
ute to the current in order unity, but to the space charge only
in orderm. To focus on the dynamics of the ions, a time scale
t̄=mt is chosen. Then the model attains the form

m ]t̄s= ]zsEsd + sEasEd, s15d

]t̄r = − ]zsErd + sEasEd, s16d

rs0,t̄d = 0, s17d

ssL,t̄d = grsL,t̄d, s18d

r − ms= ]zE. s19d

This rescaling allows to take two essential approximations in
the limit of smallm: First, s evolves on the short time scale
t= t̄ /m while r evolves on the long time scalet̄. For small
m, the electrons therefore can be eliminated adiabatically
from the ion motion. Hence on the ion time scalet̄ (and as
long as EÞ0), the electron distribution is equilibrated or
“slaved” and we can approximate Eq.(15) by

f]z + asEdgfsEg < 0. s20d

Second, the contribution of the electrons to the space charge
is negligible for smallm; hence Eq.(13) can be approxi-
mated by

r < ]zE. s21d

This can also be understood as follows: electrons and ions
are generated in equal amounts, but the electrons rapidly
leave the system while the ions move slowly and therefore
reach much higher concentrations.

As a consequence of the differential equation(20) and the
boundary condition(18), the electron current at positionz
now can be completely expressed by the instantaneous ion
density at the boundaryL and the fieldE betweenz andL as

fsEgszd = g rsLdEsLdeez
LafEszdgdz. s22d

Using Eqs.(16) and(20), the equation of motion for the ions
becomes

]t̄r = − ]zsrE + fsEgd, r = ]zE s23d

with fsEg from (22).
Because of Eq.(21), r (or alternativelyE) can be elimi-

nated from the equations. The result is a rephrasing of the
model completely in terms of the fieldE and its differentials
and integrals

]t̄E + ]z

E2

2
+ gU]z

E2

2
U

L
eez

LafEszdgdz= jst̄d, s24d

]t̄Ust̄d =
Ut − Ust̄d − Rsjst̄d

mts
, s25d

where

Ust̄d =E
0

L

Esz,t̄ddz, s26d

and

jst̄d = u]t̄EuL + s1 + gdU]z

E2

2
U

L
. s27d

Let us decompose the field into its value on the cathode

ELst̄d = EsL,t̄d s28d

and the remainder

Esz,t̄d = ELst̄d + esz,t̄d with euL = 0, s29d

where the ion density can be recovered through]ze=r. The
equation of motion fore becomes

]t̄e = uEL]zeuL − EL]ze − e]ze + gEL]zeuLs1 − eez
Ldy asEL+edd .

s30d

Note that if esL ,td=0 initially at t=0, then the equation of
motion fore conserves this property for all times, as required
by Eq. (29). For the equation of motion forEL, first the
potentialUst̄d has to be expressed in terms ofEL ande

Ust̄d = LELst̄d +E
0

L

dz esz,t̄d. s31d

Equation(25) for ]t̄U requires that we calculate

E
0

L

dz ]t̄e =
ue2u0

2
u + ELe0 + LELrL

3S1 + g − gE
0

L dz

L
eez

Ldy asEL+edD , s32d

where we introduced the short-hand notation

rL = ]zeuL. s33d

Introducing the small parameterc=Lmts/Rs which is the
ratio of capacitances of semiconductor and gas discharge lay-
ers, we find forEL

]t̄EL = − s1 + gdELrL +

Ut − LEL −E
0

L

dze

s1 + cdRs

+
c

1 + cSELrLgE
0

L dz

L
eez

Ldy a −
ue2u0 + 2ELueu0

2L D .

s34d

The structure of the explicit(but somewhat lengthy) equa-
tions (30) and (34) is

]t̄esz,t̄d = Fse,ELd and ]t̄ELst̄d = Gse,ELd. s35d

So this is not a system of two scalars such as previous au-
thors have suggested for a reaction diffusion model, but a
system of the scalarEL and the functione.

The electric fieldEL at the cathodez=L determines the
secondary emissiong as well as the local bulk ionization rate
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a, and it is closely related to the potentialU over the gas
discharge. We therefore take it as the first characteristic sca-
lar variable for the state of the system. A second such scalar
variable could be the ion densityrL at the cathode, since it
characterizes the conductivity and therefore also the electric
particle currentrLEL+ ufsEguL=s1+gdrLEL at the cathode. A
two-component reaction-diffusion model could therefore
consist of equations for the two scalarsEL andrL. But can it
be derived from the present equations?

Taking the spatial derivative of Eq.(30) at L, we find the
equation of motion forrL

]t̄rL = − rL
2 − EL ]zruL + grLELasELd. s36d

The evolution ofrL depends on its local value, on the value
of the local fieldEL and also on the local derivative ofr. If
this derivative]zruL=]z

2euL could be neglected, we would
have derived a two-component model.

However, it is not possible to neglect]zruL. This can be
easily seen in the Townsend limit of very small space
charges where the term −rL

2 in (36) can be neglected.
WhetherrL grows or decays, therefore depends on the sign
of grLasELd−]zruL, i.e., on the local balance of generation
and transport of ions.

An equation of motion for]zruL in turn would depend on
]z

2ruL etc., so an infinite hierarchy of equations would have to
be considered. This observation, of course, corresponds to
the fact that the state of the gas discharge has been charac-
terized by the full functionesz, t̄d or rsz, t̄d throughout the

gas gap, where the ion distributionr through the gap carries
the memory of previous states of the system.

VIII. SUMMARY AND OUTLOOK

We have recalled experimental observations of spontane-
ous pattern formation in layered gas discharges in the regime
between Townsend and glow discharge. Due to similarities
with pattern formation in reaction-diffusion models, a num-
ber of authors have suggested effective reaction-diffusion
models for these discharges. The predictions of such models
are summarized and confronted with solutions of a full gas
discharge model where we focus on spatially homogeneous
temporal oscillations. First, we observe empirically that the
predictions of two-component reaction-diffusion models are
in variance with the numerical solutions of the full discharge
model. Second, we reduce the discharge model by an adia-
batic elimination of the electron motion and argue that the
resulting mathematical and physical structure is too rich for a
reduction to only two relevant variables.

Along the way, we also identify a period doubling cascade
in the oscillations of our simple model. Period doubling
events have been observed in more complex experimental
setups in gas discharges, but it would be most interesting to
search for this behavior in the simple experiments of type
[9].
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